Organic functionalization of luminescent oxide nanoparticles toward their application as biological probes.
نویسندگان
چکیده
Luminescent inorganic nanoparticles are now widely studied for their applications as biological probes for in vitro or in vivo experiments. The functionalization of the particles is a key step toward these applications, since it determines the control of the coupling between the particles and the biological species of interest. This paper is devoted to the case of rare earth doped oxide nanoparticles and their functionalization through their surface encapsulation with a functional polysiloxane shell. The first step of the process is the adsorption of silicate ions that will act as a primary layer for the further surface polymerization of the silane, either aminopropyltriethoxysilane (APTES) or glycidoxypropyltrimethoxysilane (GPTMS). The amino- or epoxy- functions born by the silane allow the versatile coupling of the particles with bio-organic species following the chemistry that is commonly used in biochips. Special attention is paid to the careful characterization of each step of the functionalization process, especially concerning the average number of organic functions that are available for the final coupling of the particles with proteins. The surface density of amino or epoxy functions was found to be 0.4 and 1.9 functions per square nanometer for GPTMS and APTES silanized particles, respectively. An example of application of the amino-functionalized particles is given for the coupling with alpha-bungarotoxins. The average number (up to 8) and the distribution of the number of proteins per particle are given, showing the potentialities of the functionalization process for the labeling of biological species.
منابع مشابه
Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation
Functionalization of ultrasmall semiconductor nanoparticles to develop new luminescent probes that are optically bright, stable in aqueous environments, and sized comparably to small organic fluorophores would be of considerable utility for myriad applications in biology. Here, we report one of the first examples of thermal hydrosilylation between a bi-functional alkene and ultrasmall (y1 nm) H...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملMagnetic/luminescent core/shell particles synthesized by spray pyrolysis and their application in immunoassays with internal standard.
Many types of fluorescent nanoparticles have been investigated as alternatives to conventional organic dyes in biochemistry; magnetic beads also have a long history of biological applications. In this work we apply flame spray pyrolysis in order to engineer a novel type of nanoparticle that has both luminescent and magnetic properties. The particles have magnetic cores of iron oxide doped with ...
متن کاملنانو ذرات آهن صفر ظرفیتی: روش های سنتز، شناسایی و کاربردهای آن در پزشکی و بیولوژی
Magnetic nanomaterials are making significant impact on improving the quality of human health that is tangible from a wide range of applications in various fields of medicine and biology. In recent years, nanoparticles successfully demonstrated outstanding applications due to having excellent magnetic properties of the iron oxide nanoparticles-based counterparts. Zero-valent iron nanoparticles ...
متن کاملWATER PHASE TRANSFER OF ORGANIC CAPPED CdS NANOCRYSTALS MEDIATED BY CYCLODEXTRINS
Colloidal semiconductor nanocrystals are receiving considerable attention as novel luminescent biological probes due to their unique optical properties,. The chemically synthesized nanoparticles are small in size, very bright and photostable. The advantages with respect to conventional fluorophores consist mainly in narrow band edge emissions, tunable with the nanocrystal size, broad absorption...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 24 19 شماره
صفحات -
تاریخ انتشار 2008